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Normal modes of an ice sheet
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A linearized perturbation about the Vialov–Nye fixed-span solution for a steady-state
ice sheet yields a Sturm-Liouville problem. The numerical eigenvalue problem is
solved and the resulting normal modes are used to compute Green’s and influence
functions for perturbations to the accumulation rate, the rate factor and for long-
wavelength basal topography. The eigenvalue for the slowest mode is approximately
the same as that predicted by the zero-dimensional theory. It is found that the
sensitivity of the steady profile to accumulation is greatest in the central area of
the ice sheet, while the sensitivity to rate factor is greatest near the margin. The
antisymmetric perturbation provides information about the relaxation time for divide
motion and spatial variation in the sensitivity of divide deviation from the ice-sheet
centre to accumulation rate variations. The use of the method for model initialization
is considered. Forcing deviations of 30% give relative errors in the perturbation of
about 10%.

1. Introduction
The nonlinearity in ice-sheet flows often acts to make ice sheets insensitive to

changes in the controlling parameters: for example, a two-fold increase in the
accumulation rate will only increase the steady thickness of the ice by a factor
of 21/8 ≈ 1.09 (e.g. Hindmarsh 1990). The small changes involved in short-term
behaviour, for example the response to global change, are describable by linear
theory, which permits a broad range of techniques to be used in analysing ice sheet
response and in data assimilation. Scale model applications of these principles can be
found in Oerlemans (1981) and Van der Veen (1993).

Our main concern will be with computing the normal modes to a perturbation
around the Vialov–Nye (VN) steady-state equation for an ice-sheet profile (Vialov
1958; Nye 1959). This solution has its limitations and has had criticism (Nagata 1977;
Hutter 1983) owing to its non-physical margin condition, but yields a considerable
simplification by fixing the margin position. The normal modes allow us to compute
Green’s functions or more general influence functions which analyse the spatial
variability of the sensitivity of the steady profile at a given point to forcing imposed
at any given point, as well as being a convenient technique for data assimilation
through normal-mode initialization techniques. The analysis in this paper has been
used in an investigation into the stochastic behaviour of divide position (Hindmarsh
1996).

Linearizations of the evolution equations for ice-sheet thickness have been re-
viewed by Hutter (1983, chap. 6). Two pre-computer glaciological examples are
Bodvarsson (1955) and Nye (1959). Both of these can be criticised (e.g. Fowler 1992)
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for not considering the boundary condition at the margin properly. Linearizations
have also been carried out by Halfar (1981), Hindmarsh (1990) and Fowler (1992),
but the analysis presented here is the first consistent treatment of symmetric and
antisymmetric perturbations for a nonlinear rheology.

2. Mathematical development
2.1. The ice-sheet equation

The governing equation derived below is the ice-sheet equation

∂tH =
1

ω(x)
∂x

(
ω(x)CHm |∂xs|ν−1

∂xs
)

+ a, (2.1)

where we are considering a coordinate system (x, z, t). Only plane and axisymmetric
configurations are considered. Here, H(x, t) is the thickness of the ice sheet, s(x, t)
is the upper surface, ω(x) is the flow-line width and a (x, t) is the surface mass-
balance exchange. This particular equation describes the evolution of ice-sheet
thickness where the flow mechanism is either internal deformation according to some
nonlinearly viscous flow power law or sliding according to some Weertman-type law.
Normal-mode analyses are not however limited to these situations.

Various boundary conditions can be applied to the ice-sheet equation, but we shall
consider the VN fixed-span/finite-flux boundary conditions. The field equation (2.1)
is solved on a domain x ∈ [−S, S] with boundary conditions H (±S) ≡ 0. Physically,
this can be considered as an ice sheet which has expanded to the continental margin.

The quantity C is directly related to either a weighted vertical average rate factor
Ād defined below in (2.3) of the rate factor Ad used in the viscous relationship

E = Adτ
n,

where E is a second invariant of the deformation rate and τ is a second invariant of
the deviator stress (Glen 1955) or comes from a sliding relation of the form

ub = Asτ
`
b.

We construct the following quantities for use in the general evolution equation:

ν =

{
n
`
, m =

{
n+ 2
`+ 1

, C =

{
[2/(n+ 2)]Ād internal deformation
As sliding.

We sketch the now standard (Hutter 1983; Morland 1984; Fowler 1992) derivation
of equation (2.1) using the shallow ice approximation. Vertical distances are scaled by
thickness magnitude [H], horizontal distances by span magnitude [S], accumulation
rates by [a], time by [t]= [H]/[a] and rate factor [C] by [C] = [a][S]ν+1/[ρ]ν[g]ν[H]m+ν

where [ρ], [g] are the magnitude of the density of ice and the acceleration due to
gravity. The magnitude of the shear stress [τxz] is

[τxz] =
[ρ][g][H]2

[S]
= ε[ρ][g][H] = ε[p], ε =

[H]

[S]
� 1

where ε is the aspect ratio of the problem and [p] is the pressure magnitude.
The shallow ice approximation expands the Stokes equations in terms of the aspect

ratio, treating it as a global parameter representing deviation from static conditions.
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The quasi-static formula for the shear stress introduced into glaciology by Nye (1952),
τxz = −ρg(s− z)∂xs, is re-obtained as the asymptotic approximation

τxz = −ρg(s− z)∂xs+ O
(
ε2
)
, (2.2)

and the shallow ice approximation also yields

τ ' |τxz| ; E ' 1
2
∂zu; ∂zu = 2A |τxz|ν−1

τxz.

When internal deformation is being considered, substitution of the approximate
relationship (2.2) and two integrations with respect to z yield a formula for the ice
flux

q = − 2Ād
v + 2

Hm |∂xs|ν−1
∂xs, Ād = (n+ 2)

∫ 1

0

(1− ζ)n+1 Addζ, (2.3)

where ζ = (z − b) /H . If we are treating sliding, then we simply write q = ubH =

−AsHm |∂xs|`−1
∂xs, and we may write a general flux formula

q = −CHm |∂xs|ν−1
∂xs, (2.4)

which, when used with the continuity equation

∂tH +
1

ω
∂x (ωq) = a, (2.5)

results in the nonlinear diffusion-type equation (2.1).

2.2. Singularities

The role of regularity conditions in relation to boundary conditions is discussed in
§3.3. Hutter (1983, Chaps 5 and 6), emphasizes the issue and Fowler (1992) has
constructed Frobenius expansions at the margin and the divide. We anticipate the
tangent at the margin to be infinite and assume that the bed profile b (x, t) is analytic
at the margin. To leading order the flux at the margin is a constant, and thus from
(2.4)

H ∼ |x− S |ν/(m+ν)
, x 6 S. (2.6)

This expansion violates the reduced model assumptions as the derivatives are no
longer O (1), and we follow Fowler (1992), who argues that while the flow at the
margin is incorrectly computed, the singular profiles which emerge from the use of
the reduced model allow the flow in the rest of the ice sheet to be properly modelled.

The divide curvature is singular (Weertman 1961; Szidarovsky, Hutter & Yakowitz
1986; Fowler 1992) and we anticipate the need of an additional singular descriptor
for divide asymmetry and motion. There are three requirements: (i) the slope is zero
– under reduced model assumptions, this implies that the flux is zero; (ii) there is a
non-zero vertical velocity, i.e. ∂q/∂x > 0; (iii) there is an asymmetry which can lead
to a non-zero divide migration rate. We are considering plane flow and thus we set
ω ≡ 1 for the rest of the section.

Setting the divide at the point ∂xs(x = xd (t)) ≡ 0, we may write

D(∂xs(xd))

Dt

∣∣∣∣
x=xd

=
∂(∂xs)

∂t
+Md

∂(∂xs)

∂x
= 0, (2.7)

where Md is the migration velocity of the divide. The differentiated form of the mass
conservation condition is ∂x∂ts+ ∂2

xq = ∂x∂tb+ ∂xa and substituting this into (2.7) to
eliminate ∂x∂ts yields

Md∂
2
xs = ∂2

xq − ∂x∂tb− ∂xa. (2.8)
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Define a local coordinate x̂ = x−xd, and set κ = sgn(x−xd). We use a trial expansion
about the moving divide

s = sd
(
1− e1(κx̂)1+1/ν + κe2(κx̂)1+2/ν

)
, (2.9)

where the first two terms are the usual divide expansion (Fowler 1992) and the third
term is the physically relevant descriptor of divide asymmetry and motion. The
constants e1 and e2 emerge from solutions to (2.1), e1 informing about the curvature
of the divide and e2 about the asymmetry of the divide. Assuming that b and a are
analytic about the divide we can then compute

∂xs = −sdκe1 (κx)1/ν

(
1− κe2 (ν + 2)

e1 (ν + 1)
(κx)1/ν

)
,

∂2
xs = −sd

(ν + 1)e1

ν2
(κx̂)1/ν−1 + O(|x̂|2/ν−1),

q = Q

(
x̂− ν(ν + 2)e2

(ν + 1)e1

(κx̂)1+1/ν

)
,

∂xq = Q

(
1− κ(ν + 2)

e2

e1

(κx̂)1/ν

)
,

∂2
xq = −Qe2(ν + 2)

e1ν
(κx̂)1/ν−1,

where

Q ≡ sm+ν
d

(
e1(ν + 1)

ν

)ν
.

Substitution of the expressions for ∂2
xs and ∂2

xq into (2.8) shows that these are the
leading-order terms as a result of the analyticity assumption for a and b, providing
ν 6= 1. Then, by calculating Md = ∂2

xq/∂
2
xH =

(
Q/sd

) (
ν(ν + 2)e2/(ν + 1)e2

1

)
we

confirm that this is an O(1) quantity. Clearly, stationary divides with flat bases have
e2 = 0.

2.3. Linearization perturbation

We construct a perturbation about a generalized VN solution, i.e. one with prescribed
span S and with a non-zero flux out of the margin. We may then write

s(x, t) = s0(x, t) (1 + µs1(x, t)) , (2.10a)

∂xs(x, t) = ∂xs0(x)
(
1 + µ∂x (s0(x)s1(x, t)) /∂xs0(x)

)
, (2.10b)

H(x, t) = s0(x) (1 + µs1(x, t)) , (2.10c)

a = a0(x) + µa1(x). (2.10d)

where µ is a small parameter. Since s ∼ s0 (1 + s1), ensuring s1 (x = S) = O(1) satisfies
regularity conditions. Substitution of expansions (2.10) into (2.1) gives at zeroth order

1

ω
∂x

(
ωC0s

m
0 |∂xs0|

ν−1
∂xs0

)
+ a0 = 0, (2.11)

when ∂ts0 ≡ 0. We can compute the first-order equation to be

s0

(m+ ν)
∂ts1 = − 1

ω
∂x

(
ωq0

{
s1 +

ν

m+ ν

s0

∂xs0
∂xs1

})
+

1

m+ ν
a1 + O

(
µ
mν

m+ ν

)
. (2.12)
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Note that the zeroth-order rate factor does not enter explicitly into this equation;
this is useful, as very often the flux is the measurable quantity. This form is also the
more convenient for error analysis, showing that the error for s1 is O

(
µmν/ (m+ ν)

)
.

Typically, mν/ (m+ ν) ≈ 2, meaning that if the acceptable error in s1 is 10%, then
µ = 0.05, i.e. we can consider deviations from the base profile of 5% for this error.
It is apparent from the above equation that this will be the result of forcings a1

of magnitude µ (m+ ν) , which for ν = 3, µ = 5 is a forcing perturbation of 40%.
This means that we can expect to be able to use linearizations to compute ice-sheet
evolutions of practical interest. Equation (2.12) can be written in a form convenient
for Sturm–Liouville analysis of associated eigenvalue problems:

s0

(m+ ν)
∂ts1 +

1

s
(m+ν)/ν
0 ω

∂x

(
ωq0

ν

m+ ν

s
1+(m+ν)/ν
0

∂xs0
∂xs1

)

= −∂x (ωq0)

ω
s1 +

a1

m+ ν
+ O

(
µ
mν

m+ ν

)
. (2.13)

Both forms of the linearized equation are useful: (2.12) demonstrates qualitative
properties (e.g. the error analysis, the robustness to model perturbation, see §4.4),
while (2.13) is of direct use in the following analysis.

3. Sturm–Liouville analysis of perturbations about the Vialov–Nye solution
3.1. VN solution as the zeroth-order equation

The zeroth-order equation (2.11) integrates to

q0(x) = −ωC0s
m
0 |∂xs0|

ν−1
∂xs0 =

∫ x

0

a0ωdx′. (3.1)

We treat a0, C0, as being constant and ω having power-law dependence on x, i.e.

a0(x) = am, C0(x) = Cm, x,and ω(x) = |x/S |d . The cases d = 0, 1 correspond to plane
flow and axisymmetric flows. It is not realistic to have the zeroth-order fields as
constants – the rate factor C can vary by several orders of magnitude, which cannot
be modelled as a perturbation. However, a perturbation can indicate the sensitivity
of a solution to parameter variation.

Integration of (3.1) using a monotonicity condition sign(∂xs0) = −1 with the
boundary condition s0(S) ≡ 0 yields the VN solution

sd =

(
Sδ
(
γ + 1

δ

)ν (
am

Cm (d+ 1)

))1/(γ+1)

, (3.2a)

s0(x) = sd

(
1− |x/S |δ/ν

)ν/(γ+1)

. (3.2b)

where γ ≡ m + ν − 1, δ ≡ ν + 1. This profile (3.2) is plotted in figure 1 for a few
cases, demonstrating the small sensitivity of ice-sheet profile to parameter variation.
It is a straightforward exercise to show that the profile satisfies the margin regularity
condition (2.6) and the first two (i.e. even) terms of the divide regularity condition
(2.9), with e1 = δ/ (γ + 1) , e2 = 0.

3.2. Rescaling for Sturm–Liouville form

It is very desirable in the ensuing Sturm–Liouville analysis to have the field equation
solved on a domain [0, 1] , and it also makes life a lot easier if we ensure that
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Figure 1. Normalized zeroth-order profile s0/sd for the VN solution. Cases (1) ν = 3, δ = 4, γ = 7
(i.e. spreading by Glen internal deformation); (2) ν = 3, δ = 4, γ = 6 (spreading by Weertman
sliding); (3) ν = 3, δ = 3, γ = 7 (spreading by Glen internal deformation with rate factor increasing
from centre).

zeroth-order ice-sheet profile is also normalized; thus we define

ξ ≡ x/S, (3.3a)

η0(ξ) ≡ s0 (x) /sd, (3.3b)

η1 (ξ, t) ≡ s1 (x, t) , (3.3c)

and the VN profile (3.2) becomes

η0(ξ) =
(

1− |ξ|δ/ν
)ν/(γ+1)

. (3.4)

Using this substitution (3.3), the ice-sheet evolution equation (2.1) becomes

sd∂tη =
1

ω

sm+ν
d

Sδ
∂ξ

(
ωCηm |∂ξη|ν−1

∂ξη
)

+ a,

with the flux

q = −s
m+ν
d

Sν
ωCηm |∂ξη|ν−1

∂ξη.

After using the identity m+ ν = γ+ 1, the perturbation equation (2.13) then becomes

sdη0

a0 (γ + 1)
∂tη1 +

1

ξdη
(γ+1)/ν
0

∂ξ

(
ξd+1 ν

γ + 1

η
1+(γ+1)/ν
0

∂ξη0

∂ξη1

)

= − (d+ 1) η1 +
a1

(γ + 1) a0

+ O

(
µ
mν

γ + 1

)
. (3.5)

3.3. Sturm–Liouville theory: some definitions

Having constructed linearized equations by using the VN profile as the zeroth-order
solution, they are most conveniently analysed in Sturm–Liouville form (Birkhoff &
Rota 1989). Consider a second-order eigenvalue problem

∂x (T (x) ∂xU)− Q (x)U −W (x) λU = 0 (3.6)
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where T (x) is the transmission function, Q (x) is a potential function and W (x) is
the weighting or storage function. Boundary conditions are prescriptions of U or
of the generalized flux −T (x) ∂xU. When the functions T,Q,W are singular at
the boundaries, U is not analytic and is expanded in a Frobenius series in order
to satisfy the boundary conditions. The leading-order terms are chosen so as to
satisfy regularity conditions on certain quantities, in this case the flux, which is a
conserved quantity. Equation (3.6) has eigenfunction solutions Ei(x), i ∈ N which are
orthonormal with respect to the weighting function, i.e.

∫
Ei (x)W (x)Ej (x) dx = δij

where δij is the Kronecker delta.
Consider now the related partial differential equation

W (x) ∂tV = ∂x (T (x) ∂xV )− Q (x)V +S (x)F (x) . (3.7)

Here, F (x) will be a forcing function with some physical meaning – for example the
first-order accumulation a1, while the function S (x) emerges from the analysis. A
standard separation of variable technique setting V (x, t) = U(x)T (t) transforms the
homogeneous form of (3.7), where the forcing is zero, into two ordinary differential
equations, the spatial one being in Sturm–Liouville form like (3.6). The eigenfunction
solutions form a complete set so we may write solutions in the form V =

∑∞
i=1 TiEi

and using a standard derivation (e.g. Hindmarsh 1996) construct mode-evolution
equations

Ṫ j = λjTj +

∫
EjSFdy, j ∈ N (3.8)

where λj is the corresponding eigenvalue. By defining a Green’s function

G (x, y) = G (y, x) =

∞∑
k=1

Ei (x)Ej (y)

−λj
(3.9)

we may solve the non-homogeneous steady equation through V (x,∞) =
∫
G (x, y)

S (y)F (y) dy. One may also write the quadrature formula as

V (x,∞) =

∫
K (x, y)F (y) dy, K (x, y) = G (x, y)S (y) (3.10)

in terms of a non-symmetric kernel K we call the influence function.

3.4. Symmetric perturbation

Substituting (3.4) into (3.5), multiplying the result by δξdη
(γ+1)/ν
0 /ν and defining some

new constants

Rs =
amΛs

sd
, Λs =

ν (γ + 1)

δ
(3.11)

allows us to rewrite the evolution equation (3.5) as

1

Rs
W∂tη1 = ∂ξ

(
T∂ξη1

)
− Qη1 +

S (ξ)F1

Λsam
+ O

(
δm

γ + 1
µ

)
, (3.12a)

W = ξd
(
1− ξδ/ν

)1+ν/(γ+1)
, Q = (d+ 1) δξd

(
1− ξδ/ν

)
/ν, (3.12b, c)

T = ξd+2−δ/ν (1− ξδ/ν)2
, S = ξd

(
1− ξδ/ν

)
, F1 = a1. (3.12d–f)
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Then, construction of the separable form η1(ξ, t) = Θ(ξ)T (t) allows us, after setting
F to zero, to rewrite the homogenous equation corresponding to (3.12a) as

1

Rs

T ′

T
= λs =

1

W
(
∂ξ
(
T∂ξΘ

)
− QΘ

)
, (3.13)

yielding ordinary differential equations

T ′(t) = λsRsT (t) (3.14)

and

∂ξ
(
T∂ξΘ

)
− (Q+ λsW)Θ = 0. (3.15)

The boundary conditions corresponding to zero flux (divide) and zero thickness
(margin) enter as regularity conditions. The end-point singularities in this equation
are not Fuchsian and numerical solution is required. Substitution of a trial expansion
Θ = ξc in equation (3.15) yields indicial equations with solutions c = 0, c = δ/ν−d−1.
The first solution satisfies the boundary conditions of zero flux. The indicial equation
for the expansion about the margin has solutions c = −1, 0. The solution c = 0
satisfies the boundary conditions and this solution is also adopted by the Green’s
function.

3.5. Antisymmetric perturbation

The singularity in divide curvature prevents a regular antisymmetric perturbation,
and a stretched coordinate system is used to deal with this problem following
Halfar (1981). He found infinite tangents at the divide, but by respecting the regu-
larity condition for an antisymmetric divide (2.9) we avoid this behaviour. We define
the stretching coordinate ξ such that

η(ξ, t) = η0(ξ∗), ξ = X(ξ∗, t∗), (3.16)

and solve for ξ, the physical coordinate, with ξ∗, t as the independent variables. The
divide position is given by ξ(0, t). In terms of the starred coordinate system the
transforms are

∂η

∂t

∂t

∂t∗
+
∂η

∂ξ

∂X

∂t∗
=
∂η0

∂t∗
= 0,

∂η

∂ξ

∂X

∂ξ∗
=
∂η0

∂ξ∗
,

∂

∂ξ

∂X

∂ξ∗
=

∂

∂ξ∗
.

and we use the transform for ∂η/∂ξ to construct that for ∂η/∂t,

∂η

∂t
= −

(
∂η0

∂ξ∗

/
∂X

∂ξ∗

)
∂X

∂t∗
,

where we have also used ∂t∗/∂t ≡ 1. Instead of an evolution equation for η1, see (2.1)
we obtain an evolution equation for X(ξ∗, t),

− sd
(
∂η0

∂ξ∗

/
∂X

∂ξ∗

)
∂X

∂t∗
=

1

S

∂

∂ξ∗

(
q0 (ξ∗)

∣∣∣∣∂X∂ξ∗
∣∣∣∣−(ν+1)

∂X

∂ξ∗

)/
∂X

∂ξ∗
+ a. (3.17)

We linearize, perturbing the stretched coordinate system with small parameter µ,

ξ = X(ξ∗, t∗) ' ξ∗ + µX1(ξ∗, t∗), (3.18)

and find
∂X

∂t∗
' µ∂X1

∂t∗
,

∂X

∂ξ∗
= 1 + µ

∂X1

∂ξ∗
. (3.19)
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We fix the margin position by setting X1(1, t) = 0, while the value of X1(0, t) determines
the position of the divide in ξ-space.

We construct antisymmetric perturbations in the accumulation rate

a ' a0 + µa1(ξ∗, t∗). (3.20)

Substituting (3.18), (3.19) into the evolution equation (3.17) gives us the zeroth-order
identity −∂(a0ξ∗)/∂ξ∗ + a0 = 0. Taking (ν − 1)/2 = O(1), the evolution equation for
X1 is

1

Ra
W∂tX1 = ∂ξ∗

(
T∂ξ∗X1

)
+
SF1

am
+ O (µ) , ξ∗ ∈ [0, 1], (3.21a)

W =
(

1− ξδ/ν∗
)ν/(γ+1)−1

ξ
2/ν
∗ , (3.21b)

T = ξ
1+1/ν
∗ , (3.21c)

S = ξ
1/ν
∗ /ν, (3.21d)

F1 = a1, (3.21e)

Ra =
amν (γ + 1)

sdδ
, (3.21f)

where X1 is an even function about zero, satisfying regularity conditions at the divide
and being set to zero at the margin.

We treat the homogeneous problem with X1(ξ∗, t∗) in separated form:

X1(ξ∗, t∗) = X∗(ξ∗)T∗(t∗), (3.22)

and substitute this into (3.21) to obtain

1

Λa

Ṫ ∗

T∗
= λa =

∂ξ∗
(
T∂ξ∗X∗

)
WX∗

,

where λa is the eigenvalue of the problem. The time equation has solution T∗ =
T∗0 exp (λaΛ1t∗), where T∗0 represents an initial condition, and the second-order
equation in space can be written as

∂

∂ξ∗

(
T∂X∗

∂ξ∗

)
− λaWX∗ = 0. (3.23)

At the divide the indicial equation corresponding to the trial expansion X∗ = ξc∗
yields

c = 0,−1/ν (3.24)

with c = 0 satisfying the boundary conditions for the stretching problem, while at
the margin the solution to the indicial equation is c = 0, 1 with c = 1 satisfying
the boundary conditions. An important point which will emerge is that the Green’s
function, which must also satisfy the indicial equation, is singular at the divide.

3.6. Numerical solutions to the eigenproblem

Numerical methods for solving Sturm–Liouville problems are discussed by Pryce
(1993). We compare two methods: (i) Pruess-type methods based upon the Prüfer sub-
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stitution and (ii) finite difference discretizations into a matrix equation and the solution
of the corresponding algebraic eigenvalue problem. Shooting methods are usually
superior, especially for high wavenumbers, but in future work we will be considering
higher dimensional perturbations, where finite-difference discretizations are more con-
venient. For shooting we used a public-domain code sledge (Pruess & Fulton 1993),
which contains an automatic end-point analyser for singularities and non-analyticity.

In the finite difference discretization to the symmetric problem we consider the
eigenvalue problem (3.15) in a transformed coordinate θ = ξδ/ν (the Halfar transform)
which removes the divide singularity, and we expand in the form Θ = c0 + c1θ.
Substitution of this into the transformed second-order ODE corresponding to (3.15)
and solving for c0, c1 yields ((d+ 1) ν/δ∆θ) (Θ1 −Θ0 (1 + ∆θ)) − λsΘ0 = O

(
∆2
θ

)
. At

the margin where we use the expansion Θ̂ = c0 + c1θ̂ + c2θ̂
ν/(γ+1)+1, θ̂ ≡ 1− θ, where

c0 etc. are different from the quantities used in the divide case. Here, ∆ represents
the discretization interval, with the subscript indicating the independent variable.

Expanding the transformed equation around θ̂ = 0 and solving for ci yields the
(N + 1)th row of the matrix equation

ΘN−1 = ΘN

(
λs∆

ν/(γ+1)+1
θ

Γ
+ 1 +

ν (d+ 1)

2δ
∆θ

)
,

Γ =
(ν + γ + 1)

γ + 1

(
2 +

ν

(γ + 1)

)
.

At the N − 1 interior points, the second-order ODE is written in the form

1

W (θ)

d

dθ

(
T (θ)

dΘ

dθ

)
−
(
ν (d+ 1)

δη0

+ λs
)
Θ = 0

where T (θ) ≡ θν(d+1)/δ (1− θ)2 ,W (θ) = θνd−1/δ (1− θ)1+ν/(γ+1). A discretized flux-
conservative form is used, with T (θ) evaluated at grid centres

(
i± 1

2

)
∆θ and W (θ)

evaluated at grid points i∆θ .
In the discretization of the antisymmetric equation at the margin the boundary

condition is X1 = 0. At the divide we satisfy the expansion (2.9) by X∗ = X∗0+c1ξ
1+1/ν
∗ ,

where X∗0 represents the value of X∗ at the divide. This yields a discretized relationship(
1 + 1/ν

) (
1 + 2/ν

)
∆

1+1/ν
ξ

(X∗1 −X∗0)− λaX∗0 = 0.

At the rows comprising the interior points the discretization is the obvious one for a
linear self-adjoint equation.

The usual effect of discretization error is to create inaccuracies in the spectrum
at high wavenumber, with a concomitant effect on the corresponding eigenfunctions
(Pryce 1993). Finite difference discretizations of regular Sturm–Liouville equations
yield error estimates of O

(
k4∆2

ξ

)
, and this estimate is likely to be optimistic for

irregular equations. Courant & Hilbert (1953, Vol. 1, p. 415), show that

lim
k→∞

k2

λk
=

1

π2

 1∫
0

(
W(ξ∗)

T(ξ∗)

)1/2

dξ∗

2

,

where we recall (Birkhoff & Rota 1989, pp. 417–419) that the zeros of the kth



Normal modes of an ice sheet 403

ν δ γ d Geom FD1 PP1 FD2 PP2 FD3 PP3
An∞
k2

PP∞
k2

Type

3 4 7 0 S 9.11 9.11 49.8 49.7 123 123 16.4 16.3 D
3 4 7 0 A 16.2 16.2 64.9 65.0 146 146 16.4 16.4 D
3 4 7 1 X 20.0 20.0 72.8 72.8 158 158 16.4 16.4 D
3 4 6 0 S 8.11 8.10 45.1 45.0 112 112 15.1 15.0 S
3 4 6 0 A 14.5 14.5 58.9 59.0 133 134 15.1 15.1 S
3 4 6 1 X 18.0 18.0 66.1 66.2 144 144 15.1 15.1 S
1 2 3 0 S 4.27 4.27 29.2 29.2 75.8 75.7 10.8 10.8 D
1 2 3 0 A 14.0 14.0 49.7 49.7 107 107 10.8 10.9 D
1 2 3 1 X 8.97 8.97 39.3 39.3 91.2 91.3 10.8 10.8 D
4 5 9 0 S 11.6 11.6 61.0 61.0 150 150 19.6 19.6 D
4 5 9 0 A 18.3 18.3 75.6 75.6 172 172 19.6 19.6 D
4 5 9 1 X 25.6 25.6 90.7 90.7 195 195 19.6 19.7 D

Table 1. Comparison of finite difference (FD) and Prüfer–Pruess (PP) methods for finite eigenvalue
calculation, and PP and analytical solutions for asymptotic eigenvalues. The number after FD,
PP corresponds to the eigenvalue ordinal k. Geometries are symmetric (S), antisymmetric (A) and
axisymmetric (X). Finite difference calculations used 100 grids, PP calculations a tolerance of 10−3.
Types of flow are internal deformation (D) and sliding (S). See text for explanation of the parameters
ν, δ, γ and d. Columns 12 and 13 represent λ/k2 as lim k →∞ for the analytical asymptotic solution
and as calculated by PP methods. PP calculations had a tolerance of 10−3, and show λ/k2 for
k = 100.

eigenfunction divides the interior of the domain into k regions. We find

lim
k→∞

k2

λsk
= lim

k→∞

k2

λak
=

1

π2

(
ν

δ
B

(
1

2
,
1

2
+

ν

2(γ + 1)

))2

(3.25)

where B is the beta function. (The equivalence of these results is a necessary
condition for having computed the perturbations correctly.) We validate by comparing
computed asymptotic spectra with this result.

Our major concerns are: (i) computing the first few eigenvalues and eigenfunctions,
as these give the response times of the most important modes; (ii) carrying out suffi-
cient testing to demonstrate that these have been computed correctly; (iii) computing
the influence functions, which requires a long eigenfunction expansion.

We see from table 1 that near three-figure accuracy is being obtained, and that
the eigenvalues for the slowest mode tend to lie somewhat higher than the value of
γ+ 1 predicted from scale theory. The slowest antisymmetric modes have eigenvalues
approximately twice the fundamental eigenvalue. The comparisons of computed and
analytic asymptotic spectra show excellent agreement.

3.7. Perturbations of bed profile and rate factor

In addition to perturbing the accumulation rate, linearization can also be used to
perturb the rate factor C and the bed profile b (x, t). We write

C = C0(x) + µC1(x),

b = b0(x) + µb1(x),

H(x, t) = s0(x) (1 + µs1(x, t))− µb1(x),
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and it is easy to compute that the forcing for the general VN perturbation (2.13) is
now given by

s0

γ + 1
∂ts1 +

1

ωs
(γ+1)/ν
0

∂x

(
ωq0

ν

γ + 1

s
1+(γ+1)/ν
0

∂xs0
∂xs1

)

= −∂x (ωq0)

ω
s1 +

F1

γ + 1
+ O

(
µ
mν

γ + 1

)
, (3.26a)

F1 = a1 −
1

ω
∂ξ

(
ωq0

(
C1

C0

− mb1

s0

))
. (3.26b)

Similar computations reveal the forcing functions for the symmetric and antisymmetric
perturbations to the VN solution (equations (3.12a), (3.21a)) to be

F1(ξ, t) = a1(ξ)− am

ξd
∂ξ

(
ξd+1

{
C1

C0

− mb1

s0

})
. (3.27)

3.8. Green’s and influence functions for steady perturbations

With S (ξ) = ξd(1 − ξδ/ν) for the symmetric case we have from (3.10) an influence
function defined as

K (ξ, φ) =

∞∑
i=1

Ei (ξ)Ei (φ)φd
(
1− φδ/ν

)
−λi

,

which we can use to write the true perturbation

η̂1 = η0η1 =
1

Λs1

∫ 1

0

η0

∞∑
i=1

Ei (ξ)Ei (φ)

−λi
φd
(
1− φδ/ν

)
a1 (φ) dφ,

with corresponding influence function

Ksa (ξ, φ) = η0

∞∑
i=1

Ei (ξ)Ei (φ)

−λiΛs1
φd
(
1− φδ/ν

)
. (3.28)

The rate-factor perturbation (am0/ξ
d)∂ξ

{
ξd+1C1(ξ)

}
(see (3.27)) appears inside a

derivative, and to compute an influence function we integrate the product of this
term and Ksa by parts, obtaining

KsC (ξ, φ) = −η0 (ξ)

∞∑
i=1

(
Ei (ξ)Ei (φ)

−λiΛs

)
δ

ν
φd+δ/ν

+η0 (ξ)

∞∑
i=1

(
Ei (ξ)T (φ) ∂φEi (φ)

−λiΛs

)
φ1/ν

1− φδ/ν . (3.29)

With S (ξ∗) = ξ
1/ν
∗ /ν for the antisymmetric case we have from (3.10) the influence

function for the accumulation perturbation

Kaa (ξ∗, φ) =
1

νa0

∞∑
i=1

Ei (ξ∗)Ei (φ)

−λi
φ1/ν , (3.30)

which yields X1(ξ∗). The perturbation to the profile is recovered by using the leading-
order relationship η̂1 ' −(∂η0/∂ξ∗)X1 (ξ∗). The rate factor perturbation influence
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function is

KaC (ξ∗, φ) =
1

ν
Kaa +

1

ν

∞∑
k=1

Ei (ξ)T (ξ) ∂φEi (φ)

−λj
. (3.31)

4. Applications
4.1. Computation of the influence function

The influence functions were computed using summations of eigenfunction series
generated by sledge. In all cases 200 eigenfunctions were used, each represented by
807 points (symmetric case) and 808 points (antisymmetric case). These are sufficient
to represent the break in slope found by definition in Green’s and related influence
functions (Roach 1982) but there are still Gibbs’ phenomena associated with the
computation of KaC . These do not appear to jeopardise the accuracy of the response
obtained by convolving the influence functions with the forcing, as indicated by
cross-checks on the computation of the influence functions, which may be made as
follows. Following Weertman (1973), Hindmarsh (1996) shows the ratio of distances
from divide to left and right margins SL, SR are given by

SL

SR
= Υ =

((
amR/amL

)
(CmR/CmL)

)1/δ

,

where subscripts L,R represent values on left and right sides. We may easily show
from this relation and (3.2) that

dsd
dam

=
1

γ + 1

sd

am
,

dX0

damR
=

1

δ (1 + Υ )2

Υ

amR
, (4.1)

where X0 is the normalized divide-position deviation. By setting the accumulation
perturbation a1 to be a constant and using (3.28), (3.30) we should recover the
relationships (4.1). Thus, for the symmetric case, setting a1 (φ) = a1c we expect to find

η̂1 =
1

Λs1

∫ 1

0

η0

∞∑
i=1

Ei (ξ)Ei (φ)

−λi
φd
(
1− φδ/ν

)
a1cdφ =

a1c

γ + 1
η0,

and for the antisymmetric case we expect

X1 (ξ∗) =
1

νa0

∫ 1

0

∞∑
i=1

Ei (ξ∗)Ei (φ)

−λi
φ1/νa1cdφ =

a1c

δ
(1− ξ∗) .

The solutions (4.1) were obtained with errors of < 10−5. The solutions for unit
perturbations in rate factor are

η̂1 = − C1c

γ + 1
η0, X1 = −C1c

δ
(1− ξ∗)

respectively. The errors for all these were very small (. 10−4), even for the rate-factor
perturbation to the antisymmetric solution, which suffers from Gibbs’ phenomena.
We comment that the step function in accumulation rate at the divide for the
antisymmetric case violates the assumption of analyticity, but this does not have
significantly deleterious consequences.
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Figure 2. Accumulation rate influence function (a) Ksa(ξ, φ) for the symmetric base case
(b) Kaa(ξ, φ) for the anti-symmetric base case ν = 3, δ = 4, γ = 7, d = 0.

4.2. Sensitivity to spatial variation in forcing fields

The physical interpretation of the influence function for the symmetric (figure 2a)
and anti-symmetric (figure 2b) perturbations is a delta-function impulse being applied
to the system at a position φ on the influence axis which produces the indicated
response along the ξ-axis, samples of which are plotted in figure 3. The influence
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Figure 3. Samples of the kernel influence functions for constant φ. Horizontal axis is ξ, the response
axis. The value of φ is indicated by the position of the break in slope of the function. (a) Symmetric
accumulation perturbation Ksa(ξ, φ), (b) Antisymmetric accumulation perturbation Kaa(ξ, φ), (c)
Symmetric rate-factor perturbation KsC (ξ, φ), (d) Anti-symmetric rate factor perturbation KaC (ξ, φ).
All for the case ν = 3, δ = 4, γ = 7 and d = 0.

functions, which indicate spatial sensitivity, exhibit typical forms for diffusion-type
equations, with maximum sensitivity found at the centre ξ = 0 and a declining
sensitivity of profile along the diagonal ξ = φ found as one moves to the margin.
The divide-position sensitivity kernel function Kaa(0, φ) to antisymmetric accumulation
distributions is shown in figure 4. The principal qualitative feature is that of greater
sensitivity near the divide. The indicial equation solution (3.24) indicates the possibility
of singular behaviour in the Greens function Kaa, which does not converge uniformly
at the divide. The analytical check based on (4.1) indicates that failure to model this
singularity properly is not of numerical significance.

The sensitivity of the volume perturbation
∫ 1

0
η1dφ to symmetric accumulation

perturbation is expressed through the kernel influence function Va:

Va(φ) =

∫ 1

0

Ksa(ξ, φ)dξ,

∫ 1

0

η1dφ =

∫ 1

0

Va(φ)a1dφ.

This is plotted in figure 4. There is a decreasing sensitivity on volume perturbation with
distance from divide as predicted from recursion relationships by Hindmarsh (1992).
The volume sensitivity function can be regarded as an ideal sampling density function.
Accumulation rate measurements designed to constrain glaciological response should
have a higher density in the central area of an ice sheet.

The forms of the influence functions for rate factor and basal topography normal-
ized by the local ice-sheet thickness are the same (figure 5), although the influence
function should be multiplied by −m in assessing the response to a forcing −b1/s0.
These influence functions for very long-wavelength topography complement those
computed by Jóhannesson (1992) for medium and short wavelengths. The Neuman
summation used in the computation of KaC produced severe Gibbs’ phenomena, and
for the purpose of illustration we use the less accurate method of inverting the finite
difference operator whose construction was outlined in §3.6. In computation, the



408 R. C. A. Hindmarsh

–0.4
0.2

φ

0 0.4

0

0.4

0.8

1.2

0.6 0.8

Figure 4. One-dimensional sensitivity functions. Ice volume sensitivity function to accumulation
Vsa(φ) (+) and rate factor VsC (φ) (∗) for the symmetric case and divide-position sensitivity function
Kaa(0, φ) (o) and KaC (0, φ) (x). Notice how sensitivity to accumulation occurs at the divide while
sensitivity to the rate factor (and basal topography) is increased at the margin. For base case
ν = 3, δ = 4, γ = 7, d = 0.

influence functions computed using Neuman series can be used, as comparison to
equations (4.1) showed very small errors as described in §4.1.

Figures 3(c) and 5(a) show that the exponential ramp model (Nye 1959, Jóhannesson
1992) for flow down an infinite section is a good qualitative model of the Green’s
functions for sensitivity to rate-factor variation and bedrock forcing. Defining `1∂xs1 =
−(s1−b1) the perturbation problem along an infinite ramp has solution s1 =

∫ ∞
−∞ g(x−

ξ)b1dξ where the Green’s function is

g (x− ξ) =


1

`1

exp

(
x− ξ
`1

)
, ξ < x

0, ξ > x,

the exponential ramp (Jóhannesson 1992). The increased sensitivity near the margin
is qualitatively predictable from the infinite-slope model.

Figure 5(b), shows the influence function for antisymmetric response to rate-factor
and bed variation. The influence represents a rate-factor forcing and the response
represents the local coordinate stretching. A positive rate-factor forcing causes a
negative divide deviation. This negative deviation of the coordinate is maintained
until the line ξ = φ, after which the deviation is positive. The physical interpretation
of this is that upstream of the forcing, slopes are gentler while downstream, slopes
are greater. A bump or a decrease in rate factor have the same effect.

We may compute the volume sensitivity kernel function VsC

VsC(φ) =

∫ 1

0

KsC(ξ, φ)dξ,

∫ 1

0

η1dφ =

∫ 1

0

VC(φ)C1dφ,

which is also plotted in figure 4, showing that volume is most strongly dependent
on rate-factor perturbations at the margin. The divide-position influence function
KaC(0, φ) is also plotted in figure 4.
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Figure 5. Rate factor/topography influence function (a) KsC (ξ, φ) for the symmetric base case and
(b) ν = 3, δ = 4, γ = 7, d = 0. KaC (ξ, φ) for the antisymmetric base case.

4.3. Time-dependent response

A standard derivation (e.g. Hindmarsh 1996) shows that the accumulation distribution
needed to excite mode i alone is given by a1 = (W/S)Ei. The slowest decaying mode,
i = 1, is plotted for symmetric and antisymmetric cases (figure 6). The sensitivity
of the symmetric slow mode is greatest to accumulation rate variation in the centre
of the ice sheet, similar to the steady response, while the transient sensitivity of the
divide position is greatest halfway between divide and margin, different from the
steady response.
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Figure 6. Accumulation rate distributions Fs(ξ),Fa(ξ) which excite the slowest modes for
symmetric forcing (∗) and antisymmetric forcing (+), base case ν = 3, δ = 4, γ = 7, d = 0.

4.4. A generalized VN solution

We now generalize our models of the spatial dependence of C0 to power-law forms,

C0(ξ) = Cm |ξ|r , and introduce the bed multiplier β0(ξ) = βm |ξ|f/m which introduces
zeroth-order basal topography through the construction

H0 = s0β, b0 = s0 −H0 = s0 (1− β0) .

For positive indices this power-law construction implies that the rate factor and
thickness vanish at the origin. These are not plausible physical descriptions, but may
be considered as asymptotic cases where the rate factor and thickness become very
small at the divide.

Extending the definitions α ≡ f + r, δ ≡ ν + 1− α, δ1 ≡ d− α+ 1, we obtain

η0(ξ) =
(

1− |ξ|δ/n
)n/(γ+1)

,
s
γ+1
d

Sδ
=

(
γ + 1

δ

)ν
am

βmmCmδ1

,

which should be compared with the base-case VN solution (3.2). The profile is still a
hyper-ellipse. Changing the flow geometry produces a small difference to the thickness
for a given span (Nye 1959), and altering the other indices for rate factor, thickness
etc. has a similarly muted effect.

We can use exactly the same symmetric perturbation equation with the above
altered definitions of the parameters, provided we restrict consideration to f = 0. The
construction is straightforward provided one notes that H = β0s0(1 + s1/β0). Defining
also

ψ ≡ m/β + ν

γ + 1
,

we obtain an eigenvalue problem

∂ξ

(
ξd+2−δ/ν (1− ξδ/ν)1+ψ

∂ξη1

)
− ξd

(
1− ξδ/ν

)ψ (δ
ν

(d+ 1) + λη0

)
η1 = 0.

The slowest-mode eigenvalues were calculated by shooting and are given in table 2.
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β 1 1 1 1 0.5 1.5 0.5 1.5 0.5 1.5
d 0 0 1 0 0 0 1 1 0 0
α 0 −1 0 1 0 0 0 0 −1 −1
−λ1 9.1 8.9 20 9.4 8.9 9.2 19 20 8.7 9.0

Table 2. Eigenvalues of slowest mode −λ1 from the generalized symmetric perturbation. The
parameter β is the thickness/elevation multiplier (unity in the base case), while longitudinal variation
in properties is accounted for by the parameter α. The parameter d represents the dimension of the
flow. See text for further explanation. ν = 3, γ = 7 in all cases.

Having considered the effects due to variation of the flow geometry, the variation in
the rate of relaxation of the slowest mode with basal topography is minimal and with
the singular spatial variations in rate factor is small. Ice-sheet response is extremely
robust to severe parameter ignorance. The results can be qualitatively explained
by considering the low sensitivity of the zeroth-order profile (3.4) to changes in the
parameters (see Figure 1). The perturbation equation (2.12) shows that by fixing the
ice flux, the zeroth-order quantities only enter with unit exponents. Changing the
zeroth-order profile does not significantly change the perturbation equation as the
important control is the ice flux. This low sensitivity is of use in the following section.

4.5. Normal-mode initialization

Normal-mode expansions are used to project data onto certain modes with desirable
properties (Daley 1991). One aim of initialization in ice-sheet models is to filter out the
high-wavenumber variation in the surface topography. This variation is principally
caused by high-wavenumber variation in the poorly known basal topography (Nye
1959).

Consider a measured ice-sheet profile η̂. We wish to project it onto the zeroth-order
solution and m linearized modes. Since the linear modes form a complete set, any
residual from the zeroth-order solution can be projected onto them, implying that
zeroth mode is non-unique. Let us write η̂ = η0(c

0 +
∑∞

c1
i Ei) where cji are constants.

We integrate over the domain and use the orthogonality relations to obtain∫
EiW (ξ)

η̂

η0

dξ = c0

∫
EiW (ξ) dξ + c1

i , i = 1,∞.

We truncate and restrict consideration to m modes, writing η̂ = c0η0 +
∑m

c1
i Eiη0 +ση0

where σ is an error term, and after using the orthogonality relationships m times,
arrive at∫

EiW (ξ)
η̂

η0

dξ = c0

∫
EiW (ξ) dξ + c1

i + c0

∫
EiW (ξ) σdξ, i = 1, m.

Since the error term σ is the sum of the all the unconsidered modes orthogonal to the
ith linear mode, the term involving the error is identically zero, and we are left with m
equations involving m+ 1 unknowns. Adding the m equations, squaring, minimizing
the sum of the squares of the linear modes yields the following equation for the zeroth
mode:

c0 =

∑∫
EiW (ξ) η̂/η0dξ∑∫
EiW (ξ) dξ

.

This relationship is independent of the values of c1
i .
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5. Summary and further work

These calculations have informed us about the spatial variation in the sensitivity of
ice-sheet response to perturbation in steady state and in transient response. Variations
in accumulation forcing comparable with those experienced by some ice sheets during
ice-age cycles produce a response sufficiently small to be describable by linearization
techniques. Steady and symmetric response are more sensitive to accumulation rate
variation in the centre of the ice sheet, while transient divide response is more sensitive
to accumulation rate variation halfway between divide and margin. The sensitivity
function can be regarded as an ideal sampling density function. Accumulation-rate
measurements designed to constrain glaciological response should have a higher
density in the central area of an ice sheet.

The use of these expansions for normal-mode initializations has been pointed out
and a simple scheme outlined. The robustness of the perturbations to ignorance of the
rheological properties of ice indicates that normal-mode initializations are practicable
in the absence of precise knowledge of the ice rheology and can therefore be useful
in short-term predictions.

I have had instructive conversations with Andrew Fowler, Kolumban Hutter, Tómas
Jóhannesson, Elizabeth Morris, John Nye and John Pryce. I used a driver for sledge
written by Marco Marletta.
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